Notasbit

Las mejores noticias de tecnología en un sólo lugar

Publicado por: ABC

Publicado en: 28/01/2019 19:56

Escrito por: (abc)

Un algoritmo reduce el sesgo racial y de género en los sistemas de reconocimiento facial

Un algoritmo reduce el sesgo racial y de género en los sistemas de reconocimiento facial

Un equipo de investigadores del Instituto de Tecnología Massachusetts (MIT) ha conseguido desarrollar un algoritmo que reduce al 60% el sesgo racial y de género que resulta del entrenamiento del reconocimiento facial de la Inteligencia Artificial (IA).

Un informe del Laboratorio de Inteligencia Artificial y Ciencia Informática (CSAIL) del Instituto de Tecnología Massachusetts (MIT) se explica cómo un equipo de investigadores ha conseguido reducir el margen de error de los resultados obtenidos en las pruebas con Inteligencia Artificial (IA) de reconocimiento facial con respecto al género y a la raza de la muestra.

Un estudio del año pasado explicaba que el margen de error en el reconocimiento facial de la IA variaba dependiendo de la raza y el género del sujeto. Este estudio, basado en los sistemas de IBM Watson, Microsoft y Facebook, mostró que las fotografías de mujeres tienen un margen de error mayor que las de los hombres; error que aumenta, además, cuando el sujeto a analizar es de piel oscura.

Esta diferencia encuentra su explicación en la base datos sobre los que la IA basa su aprendizaje. Este sistema de datos cuenta con más muestras de hombres blancos que de mujeres negras, por lo que la Inteligencia Artificial tiene más dificultades a la hora de reconocer a los grupos de los que tiene menor referencia.

Un equipo del MIT ha avanzado en la solución de este problema al desarrollar un algoritmo que permite identificar y minimizar cualquier sesgo oculto, mediante el aprendizaje tanto de una tarea …

Top noticias del 29 de Enero de 2019